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Relaxation on critical percolation clusters, self-avoiding random walks,
and the quantum Hall effect

F. Evers
Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403

~Received 2 October 1996!

Large contour lines in a random landscape constitute a continuum percolation problem. We consider directed
walks on these lines at the percolation threshold—self-avoiding by construction—and calculate the density
correlation function using a Monte Carlo simulation. It has a scaling structure where all exponents are related
to the fractal dimensiondh57/4 of extended contour lines. The corresponding scaling function, however,
vanishesin the limit v→0 with a power law giving rise to anothera priori independent exponentz. Our data
indicate a Cole-Cole structure for the quantityx9(v) averaged over extended lines only, which implies
z52/7, h50 and an anomaly in the small frequency asymptotics of the diffusion coefficientD(q,v)
}v2z/q2. This anomaly is reminiscent of a similar one in the quantum Hall effect, however, with negative
zqhe. We argue that the difference is due to the decay of phase resonances in the latter which come with a
broad distribution of decay times.@S1063-651X~97!14102-2#

PACS number~s!: 64.60.Ak, 71.30.1h, 73.40.Hm
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I. INTRODUCTION

Contour lines in a random but smooth landscape con
tute a typical continuum percolation problem@1#. The lines
are all closed at very low elevation. With increasing altitu
the mean extension of the contour lines grows until fina
there is a line spanning the entire landscape so that it
comes percolating.

One can attribute an orientation and a velocity to an
moving on such a contour line: If it walks around an island
moves clockwise, otherwise counterclockwise. Its spee
proportional to the mountains slope at its position. As co
tour lines never intersect, the ant—from its own point
view—behaves as if performing a particular type of se
avoiding random walk. It is in the same universality class
the ‘‘smart kinetic walk’’ introduced earlier by Weinrib an
Trugman@2#.

This model—extended by the semiclassical quantiza
condition of integer flux between two neighboring conto
lines—is an accurate description for the propagation of e
trons in the semiclassical, high magnetic field limit@3#. In
the context of the Integer quantum Hall effect it provides
intuitive approach to the experimental facts@4#.

Its predictions for the critical exponents in actual quant
Hall systems are incorrect, however~e.g.,np54/3 instead of
nqhe52.360.1 @5#!. Nevertheless, in a previous study@6# we
have found that the result for the dynamical conductivity
criticallity coincides with the numerical results of full quan
tum mechanical calculations@7,8#. In particular, we have re
covered the supposed to be universal value for the s
conductivity sxx50.560.02e2/h and the ‘‘long time tail’’
anomaly.

In these calculations we have seen that it is essentia
distinguish two different kinds of averages over ant trajec
ries: one average takes only such paths into account w
do not close within the observation time; whereas anot
procedure counts all orbits regardless if they are closing
not. Ant motion on open trajectories is superdiffusive in t
551063-651X/97/55~3!/2321~7!/$10.00
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sense that the mean square deviation from the origin
creases, liket11d, whered51/7 is positive. Hered can eas-
ily be traced back to the fractal dimension of the hull. T
latter describes the relation

Rdh}L ~1!

of the extension of a trajectory to its length. Given that t
average velocity of an ant may be taken as constant,
derived52/dh2151/7.

However, to obtain a prediction for the experimenta
relevant conductivity one actually has to average overall
contour lines. We have demonstrated analytically and
means of a numerical simulation that one obtains a sim
diffusion law in this case. All analytical consideration
heavily make use of the analogy to the site percolat
theory, by assuming that contour lines have the same st
tical properies as cluster hulls. This assumption, howeve
established very well@9,10#.

In this paper we extend our previous work and analyze
wave number dependence of the density correlation func
by means of a Monte Carlo simulation of ant tracks in ra
dom mountains. More specifically the object of investigati
is the structure factorS(q,v) which is related to the spectra
function as x9(q,v)5vS(q,v)/2. Averaging all contour
lines we find the scaling structure

S~q,v!5q221ĥu~v/qz!, z57/4,ĥ51/2 ~2!

where all exponents can be related to the fractal dimensio
the hull dh57/4. From the scaling point of view the lon
time tail anomaly in theq50 conductivity is a correction to
scaling.

It turns out, that the scaling functionu(x) itself provides
another exponentz50.2860.05 because itvanishesin the
limit of small arguments with a power law. As a cons
quence the conventional exponenth describing the wave
number dependence of the density correlation function in
limit of vanishing frequency andĥ are not identical and
2321 © 1997 The American Physical Society
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2322 55F. EVERS
instead h5ĥ2zz. Our numerical results suggest th
h50. This is consistent with a Cole-Cole form ofx9(v) for
the quantity averaged over extended orbits. The corresp
ing exponenta58/7, however, is larger than unity oppose
to the usual case@11# wherea<1. The anomaly in the scal
ing function leads to a power law for the diffusion coefficie
at small frequencies

D~q,v!}v2z/q2, v/qz!1.

One can modify the current model by allowing ants to h
across saddle points with a certain probability. We still o
serve an anomalous diffusion coefficient, however, with
negative exponentz. We discuss the connection to a simil
power law anomaly in the quantum Hall effect.

II. THE CONTINUUM MODEL

For calculating the ant paths we use a model which w
described in detail in an earlier publication@6#. Here we just
give a brief summary on how it works.

Per definition, our model on ant dynamics can be rep
sented by the equations of motion

ẋ5
]V

]y

~3!

ẏ52
]V

]x
.

Here (x,y) denotes the ant’s position, whileV(r) its eleva-
tion in a random landscape. We takeV(r) to be a superpo-
sition of Gaussians placed on a square lattice

V~r!5(
i , j

ai , jexpS 2ur2r i j u2

4 D . ~4!

Our procedure for obtaining an ant pathr(t) goes as follows:
First we pick the amplitudesai , j at random from the interva
@21,1#. Then we choose a pointr(0) in the landscape suc
that V@r(0)#50 being the critical elevation in our mode
Starting out from here we integrate the equations of mot
~3! numerically.

These equations faithfully describe ant movements on
microscopic scale. In this context it has been argued@12# that
the slowing down of the ant near saddle points has subs
tial influence on its long time dynamics: On an infinite
extended trajectory it will finally come so close to a sad
point that it asymptotically stops. However, in our calcu
tions we did not observe this slowing down. As outlined
Appendix B, the above mentioned argument neglects h
the probability of coming close to a saddle point increa
with the walking distance. It turns out, that the increase
much too weak to reduce the average velocity on very lo
contour lines substantially.

III. SIMULATION RESULTS

We discuss the outcome for the relaxation function fir

F~q,t !5^cos$q@r~ t !2r~0!#%&. ~5!
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The angular brackets indicate an average over ant paths
Figures 1 and 2 depict our results for both averages.

restrict our discussion to the total averageF(q,t) and only
mention the analogous features ofF0(q,t). We denote open
orbit quantities with an index 0.

The continuum model has a microscopic time scalet con-
nected with the correlation length of the random potent
For timest being larger thant, though small enough to allow
for an expansion of the ‘‘cosine’’ in Eq.~5!

F~q,t !512 1
4q

2^@r~ t !2r~0!#2&1•••,

the relaxation function is dominated by theq50 diffusion
behavior

^@r~ t !2r~0!#2&54Dt

~6!

^@r~ t !2r~0!#2&054D0t
11d,

FIG. 1. Relaxation function averaged over all detected trajec
ries. The unit of time is set by the average time needed to travel
correlation length of the random landscape along a trajectory.
dashed line corresponds to the largest of the six equidistant w
numbers, the uppermost line to the smallest one.

FIG. 2. Relaxation function averaged over orbits which did n
close within the observation timeTobs52048.
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55 2323RELAXATION ON CRITICAL PERCOLATION . . .
which was analyzed earlier as mentioned above. Figur
illustrates analogous results for a lattice model.

After the ant walked for a timetq on a contour line its
distance from the origin will surmount 1/q if the extension of
its orbit is large enough. The contribution of these trajec
ries to the relaxation function leads to its temporal dec
and, in particular, to its minimum. One obtains an estim
on tq by noting that the orbits in question for timest,tq can
be considered open, so that the ant motion is superdiffus
From Eq.~1! we infer: tq}q

2dh. Thus we conclude that th
dynamical exponentz5dh57/4.

Orbits with spatial extension smaller than 1/q, however,
provide for a time independent background, as can be r
off Fig. 1. This nonergodic feature of the relaxation functi
will be defered to Appendix A. It is absent inF0(q,t) as
relaxation via open trajectories is ergodic. After subtract
this background the relaxation function is negative for tim
larger thantq . This is a consequence of the fact that mo
orbits that contribute to the minimum have a tendency
trying to close on a scale not much larger than 1/q. Thus for
t.tq we observe anticorrelations rather than correlations

For the discussion of the long time and scaling feature
the density correlations we switch to the Fourier transform

S~q,v!5E
2`

`

dt F~q,t !eivt, ~7!

which we call the structure factor. In Fig. 3 we present o
data for averaging open contour lines.

From the discussion of the relaxation function the ove
structure ofS(q,v) is evident immediately. In particular, fo
the high frequency tail we derive

S~q,v!}~q/v!22 v@vmax

~8!

S0~q,v!}~q/v!22v2d v@vmax.

From matching the high frequency behavior on the sca
form

FIG. 3. Structure factor averaged over 1150 open orbits for
wave numbers betweenqmin52p/800 and qmax522.6qmin
(Tobs532768).
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S~q,v!5q221ĥu~v/qz!, z57/4, ĥ51/2

~9!

S0~q,v!5q221ĥ0u 0~v/qz!, z57/4, ĥ051/4

we find the analytical expressions for the exponents
volved.

Figure 4 displays the scaling functionu(x). In our earlier
paper@6# we argued that the velocity-autocorrelation fun
tionsF0 andF for the average over open and all trajectori
are related:F}vdF0 . This relation can easily be genera
ized

u~x!5a0x
du0~x!, ~10!

wherea0 is a dimensionless constant of order one. Hence,
also depict the curvea0x

du0 in Fig. 4. After choosing a suit-
able value fora0 it indeed falls ontou(x).

The low frequency asymptotics of the scaling function w
read off the same data:u(x)}xz with z50.2860.05. From
the definition of the exponenth

S~q,v→0!}q221h

we see that the relationh5ĥ2zz holds true. Within the
numerical accuracy our result forz suggests that

h5h050.

We can observe the power law in the scaling function
a frequency interval@0.01,0.1# roughly. In the regime
v/qz!1, which we are interested in, the corrections to sc
ing are mainly due to the finite wave number. Scaling wo
reasonably well only for the smallest wave numbers acc
sible. Thus going to lower frequencies would imply th
simulation of larger trajectories and, hence, much longer
servation times. With the continuum method this cannot
easily achieved. For the current simulation our observat
time was 327 68. This corresponds to a typical orbital rad
of 1000 potential correlation lengths. Calculating a trajecto
on an ALPHA 3000/400 takes roughly 30 min.

9

FIG. 4. Scaling function of the structure factor averaged over
3400 detected orbits. The symbol1 marks the scaling function for
the open orbit average as obtained from the data in the prece
plot after rescaling according to Eq.~10!.
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2324 55F. EVERS
Results from a lattice method

In a recent publication Wysokinski, Evers, and Bren
@13# have introduced an effective lattice model which ca
tures the features of the ant paths essential for the long
dynamics without refering to the microscopic details. Th
model allows for the simulation of larger orbits and thus
go to lower wave numbers.

We briefly outline its central idea. The network of conto
lines at a given elevation is represented by a square lat
The nodes correspond to the saddle points in the landsc
the links to the contour lines. An ant moves along the lin
of the network. Each node carries an elevationVsp , which is
positive~negative! with probability ‘‘p’’ ~‘‘1 2p’’ !. At posi-
tive nodes the ant turns right, otherwise left. At the perco
tion threshold ‘‘p’’ equals 1/2.

In Fig. 5 we present the scaling function as obtained fr
this approach. It clearly shows the asymptotic power law

IV. DIFFUSION COEFFICIENT
AND COLE-COLE TYPE RELAXATION

The structure factor is related to the complex density c
relation function

x~q,v!5x0~q!
Dq2

2 iv1Dq2
, ~11!

asS(q,v)52Imx(q,v)/v, which can be considered to be a
implicit definition of the diffusion constantD. We concen-
trate on averages over extended contour lines. In the fore
ing we have seen that here relaxation is ergodic and
x0
0(q)51, which is simply a consequence of the normaliz

tion condition

15E dv

2p
S~q,v!. ~12!

In order to capture the scaling structure of Eq.~9! we need to
introduce a more general parametrization ofS(q,v). There
are two common choices. The first one is the so called C
Cole form

FIG. 5. Scaling function as obtained from the lattice meth
The dashed line is meant as a guide to the eye. The noise pres
the data is due to the lattice structure which implies the val
(21,0,1) for the components of the ant’s velocity vector.
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x0~q,v!5
1

11~2 ivt!a , ~13!

t~q!52D0~q,v!/qz, ~14!

where we takea511d58/7 from matching on the high
frequency asymptotics~8!. This choice automatically re
spects the normalization condition ifD0 is assumed to be
constant. Note that as a consequence of the superdiffu
motion on extended contour linesa.1.

Another parametrization which we will refer to as th
diffusion coefficient parametrization~DCP! is

x0~q,v!5N~d!
D0~q,v!qz

2 iv1D0~q,v!qz
, ~15!

D0~q,v!5v2dw 0~v/qz!. ~16!

Again the matching procedure leads us to the scaling fo
for the diffusion coefficientD0(q,v). To consistently com-
pare with the previous choice we assume thatf0 is simply a
constant and calculateN(d)511d from the normalization
condition.

In Fig. 6 we show fits for either choice of the paramet
zation. We have takenD0 andw0 to be constants such tha
the high frequency tail of the original data is reproduced. T
resulting estimate of the Cole-Cole type formula for the lo
frequency amplitude is considerably better than the one fr
the DCP approach.

It is instructive to extract the diffusion coefficientD0 from
the data. We present our result for the scaling funct
w0(x) in Fig. 7. Inverting the parabolic equation yields tw
branches which touch at a single point. We take the com
nation of the low frequency tail of the upper branch and
high frequency tail of the lower one as a physical solutio
Clearly the deviation from the data in the DCP scheme
presses itself in a variation of the scaling function of t
diffusion coefficient by a factor of 3.

.
t in
s

FIG. 6. Dissipative part of the complex density correlation fun
tion for four wave numbers. The solid~dashed! line represents a fit
according to the Cole-Cole~diffusion coefficient! parametrization.
The fit for the parametersD0 andf0 orients on the high frequency
tail.
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55 2325RELAXATION ON CRITICAL PERCOLATION . . .
The simulation results for the total average in the scal
regime can be understood as a consequence of relation~10!.
We only mention that the diffusion coefficient has the stru
ture

D~q,v!5HD~v! v/vmax@1

constv2z/q2 v/vmax!1.
~17!

Herez52/7 andvmax}q
z refers to the position of the maxi

mum in the structure factor. In a previous work@6# we dem-
onstrated that in the limit of vanishing wave numberq, the
diffusion constantD(v) has a nontrivial frequency depen
dence

D~v!5Dd2constuvu1•••.

It leads to pronounced deviations from a perfect scaling
havior of the structure factor as can be seen, e.g., in Fig

In the current study we have concentrated on the fin
q behavior. For comparison with quantum calculations in
context of the quantum Hall effect it is also instructive
consider the dc conductivities in the classical models. In
lattice model the conductivity equals the diffusion const
@13#, which can easily be read in Fig. 8. Here we repor
more precise estimate than in a previous publication@13#
which issxx

c 5(0.4560.01)e2/h. In the continuum model the
conductivity issc50.5e2/h, independent of the microscopi
parameters of the random potential@6#. As both models be-
long to the same universality class we conclude that the
sipative conductivitysxx

c in the classical model cannot be
universal quantity.

V. RELATION TO THE QUANTUM HALL EFFECT

Chalker and Daniell@14# have calculated the structur
factor of wave functions for noninteracting electrons und
quantum Hall conditions. They observe a similar anomaly
the diffusion coefficient Eq.~17! and the corresponding
structure in the spectral scaling functionuqhe(v/q

z). How-
ever, they find a divergency in the asymptotics of the latte
small arguments and correspondingly a negative expo

FIG. 7. Scaling function of the diffusion coefficient. The hor
zontal branches correspond to the physical solution of the parab
equation. The slight negative slope at large argument is du
corrections to scaling.
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zqhe520.1960.02. In the opposite limit of zero wave num
ber one obtains a well defined diffusion constant. In oth
numerical calculations@7,15# in the lowest Landau level the
corresponding conductivity was found to besxx50.5e2/h
and is supposed to be independent of microscopic detai
the realization of the disorder@16#. If the quantum conduc-
tivity is indeed a universal quantity, this is in striking con
trast to its classical counterpart which, according to our
sults, is not.

How does the different low frequency asymptotics in t
scaling function for the classical contour line approach a
the wave function calculations come about? First we disc
the average over extended trajectories. As contour li
never intersect~except for the possibility of touching at
saddle point! they constitute a special kind of self-avoidin
random walk. In particular, if the ant has been at a pla
some timet ago and wants to go back, it has to find a pa
which does not cross the path defined by the steps take
times earlier thant. With increasingt this becomes more an
more difficult. In other words, ants have difficulties, aft
leaving a certain area, returning to their origin. Thus in t
sector ofv/qz!1 density fluctuations are suppressed.

If we average over all paths these considerations still
ply. However, the fraction of large orbits having small fr
quency components in the relaxation function is reduced
that S(q,v) decays faster thanS0(q,v). The trajectories
smaller than 1/q lead to thed(v) spike inS(q,v) which we
treat in Appendix A.

We believe that the different features of the structure f
tors at criticallity and low frequency are due to the possib
ity of tunneling in a wave function picture. Interference e
fects present in quantum mechanical calculations, couple
potential disorder, lead to pronounced resonances. If the
tential fluctuations are sufficiently strong and of long ran
these can support even~quasi-! classical substructures in th
wave function@17#. In the classical contour line approac
there is a fast decay channel for the density correlations
transport along the classical trajectories. We speculate th
similar fast channel also is present in the quantum syst

lic
to

FIG. 8. Data for^R2(t)& averaged over open~upper! and all
~lower! trajectories. The total average is over 7564 of which 21
have been open. The observation time has been 16 384 steps.~Data
similar to Ref.@13#, Fig. 1!.



er
tu
d-
n
t

di
d

e

g

m
on
o
im
te

fo
a
as
m
rd
be
-
b-
a
a
po

n
u
ru
i

as
ity,
cal

lu-
el,
mas
l
s

on
-
se-

ite

,

its

r

r-
er

-

in

As
ture

c-
ts
of
iny
ddle

2326 55F. EVERS
However, in addition there is a possibility for the slow
decay of sharp resonances. This provides the main ampli
in thev/qz!1 section of the structure factor. If correspon
ing classical orbits exist—as in the case of strong, lo
ranged random potentials—these are inert and caught in
d(v) peak ofS(q,v).

Figure 9 further illustrates this point. The data curves
verging at zero frequency are obtained from a slightly mo
fied version of the lattice model@17# constituting a ‘‘weakly
self-avoiding random walk.’’ We have destablized the clos
ant paths by allowing the ant to move left~right! with a
probabilityT}e2Vsp ~or 12T, respectively! even at positive
~negative! nodes. The elevations we pick from a homo
enous distribution@2W,W#. This ‘‘ant hopping’’ is meant
as a crude caricature of the actual resonance decay. It co
with a power law divergency in the low frequency secti
which is produced by a broad distribution of decay times
the originally stable classical orbits. Of course, our overs
plified model does not properly account for the complica
multifractal structure of the wave function@18# and the cor-
responding decay statistics. Soh850.7560.05 turns out to
be twice as large as the correct valueh50.3860.04.

VI. SUMMARY

We have simulated the density correlation function
directed propagation on contour lines in a random landsc
at criticality. The structure factor is of a scaling form but h
a special feature in that the scaling function vanishes at s
arguments. This anomaly is a consequence of the supe
fusive motion on extended contour lines inherently descri
by the fractal dimension of the hulldh . Under the assump
tion that the scaling function of the diffusion coefficient o
tained when averaging extended contour lines can be
proximated by a constant number, the anomaly c
qualitatively be understood. Furthermore, all scaling ex
nents can be traced back todh . In particular, we find
h50. The anomaly changes its character completely if o
allows for the hopping of ants walking on a closed conto
line across saddle points to other lines. In this case the st
ture factor diverges with a power law, reminiscent to a sim

FIG. 9. Structure factor for ‘‘hopping’’ants~diverging curves at
v→0,Tobs5209 715 2, W5200) and ‘‘nonhopping’’ ants
(Tobs5131 072, W5`) for two different wave numbers
(qmin52p/1600).
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lar anomaly in the quantum Hall effect. However, where
here the conductivity is believed to be a universal quant
our calculations show that it is not universal in the classi
models.
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APPENDIX A: RELAXATION FUNCTION
AT ZERO FREQUENCY

The contribution of closed orbits with a spatial extensi
smaller than 1/q inhibits the relaxation of density fluctua
tions back into the homogenous equilibrium state. Con
quently the decay of the relaxation function

F~q,t !5^cos$q@r~ t !2r~0!#%&

is not completely down to zero. Instead it attains a fin
number even at very large times

lim
t→`

F~q,t !512 f ~q!. ~A1!

Here as a consequence of the normalization condition~12!
the nonergodicity parameterf (q) is related to the quasistatic
isolated susceptibilityx0(q). One can easily determine how
f (q) must depend on its argument: The contribution of orb
much smaller than 1/q to the average in Eq.~5! is 1. This
implies that 12 f (q) is the ratio of all contour lines smalle
than 1/q or equivalently thatf (q) is the ratio of orbits larger
than 1/q. It is straightforward to derive from analogy to pe
colation theory that the fraction of lines with length larg
than L obey a power law with an exponent21/7 @6#. The
fractal dimension of the hulldh relates the length of a con
tour line to its spatial extension:Rdh}L. Taking all the in-
formation together we conclude

f ~q!}q1/4. ~A2!

This is in good agreement with our numerical data shown
Fig. 10.

So far we have discussed the relaxation function only.
a consequence of its nonergodic character the full struc
of the spectral function is

S~q,v!52p@12 f ~q!#d~v!1S̃~q,v!, ~A3!

whereS̃(q,v→0)50.

APPENDIX B: SLOWING DOWN AT SADDLE POINTS

Consider an ant moving on an infinitely extended traje
tory. During its walk it comes close to certain saddle poin
along its path. At these particular instances the velocity
the ant becomes very small. More precisely, for a given t
velocity, we can always observe the ant approaching a sa
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55 2327RELAXATION ON CRITICAL PERCOLATION . . .
point where its speed is even smaller than the given o
provided that we wait for a sufficiently large amount of tim
Thus one concludes that the average ant velocity we mea
should depend on the observation time: the longer we
serve, the lower the mean valuev̄ will be. This effect is of
relevance for our analysis of the long time dynamics of
ants if v̄ vanishes in the limit of infinite observation time. I
this appendix we demonstrate that slowing down at criti
saddle points is an effect too weak to diminish the ants m
velocity considerably.

Near the saddle points of interest to us the potential
be parametrized in a parabolic approximation

V~x,y!5Vsp2~a/2!x21~b/2!y2.

As the ant moves at constant elevation its position (X,Y) can
be parametrized by a single coordinate, sayX. We integrate
the equations of motion~3! to find the timet i0 needed for the
ant to walk from some spotXi near the saddle point to th
positionX0 where its distance is minimal

FIG. 10. Wave number dependence of the nonergodicity par
eter f (q).
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An ant heading straight to the saddle point~corresponding to
X050) would need a logarithmically infinite time to actual
get there and thus stop altogether.

Next we estimate the impact of this effect on the me
velocity measured on a piece of a contour line of lengthL.
When traveling the ant passesZL(X0) saddle points located a
distanceX0 from its path. A measure for the timeTi0 spend
near these locations is

Ti05E
0
dX0ZL~X0!t i0~X 0!.

Introducing the distribution function

P~X0!5 lim
L→`

ZL~X0!/L

and the total timeTD spend for traveling in between th
saddle points we define a mean velocityv̄

v̄ 215
TD1Ti0

L
5S TD1E

0
dX0P~X0!t i0~X0! D Y L.

In a numerical study we found thatP(X0) vanishes linearly
at small arguments. Thus it completely suppresses the w
logarithmic divergency oft i0 in the integrand and the mea
velocity is finite. We did an independent check on this res
by investigating the mean velocity of ants living on clos
orbits as a function of the length of this orbit. We foun
v̄(L)50.96 essentially independent ofL. Thus we conclude
that assuming a finite mean velocity for the traveling a
independent of their orbital extension is very well justifie
and slowing down near saddle points can safely be igno
for our purposes.
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